4 research outputs found

    Translational research will fail without surgical leadership:SCOTRRCC a successful surgeon-led Nationwide translational research infrastructure in renal cancer

    No full text
    Background: High quality human biosamples with associated high quality clinical data are essential for successful translational research. Despite this, the traditional approach is for the surgeon to act as a technician in the tissue collection act. Biomarker research presents multiple challenges and the field is littered with failures. Tissue quality, poor clinical information, small sample numbers and lack of validation cohorts are just a few reasons for failure. It is clear that the surgeon involved in tissue acquisition must be fully engaged in the process of biosampling for a specific condition, as this will negate many of the issues for translational research failure due to an inadequate bioresource. Approach: In this Matter for Debate paper, the Scottish Collaboration On Translational Research into Renal Cell Cancer (SCOTRRCC) is discussed as an example of a urological surgery lead bioresource which has resulted in a National collection of renal cancer tissue and blood (from over 900 patients to date), negating all of the traditional issues with biobanks because of close enagagement and acknowledgement of urologists and uropathologists from seven centres around Scotland. SCOTRRCC has leveraged renal cancer research in Scotland resulting in several high impact publications and providing a springboard for future research in this disease in Scotland and beyond. Conclusions: The SCOTRRCC model presented here can be transferred to other surgical disciplines for success in translational research

    First EURONEAR NEA discoveries from La Palma using the INT

    Get PDF
    Since 2006, the European Near Earth Asteroids Research (EURONEAR) project has been contributing to the research of near-Earth asteroids (NEAs) within a European network. One of the main aims is the amelioration of the orbits of NEAs, and starting in 2014 February we focus on the recovery of one-opposition NEAs using the Isaac Newton Telescope (INT) in La Palma in override mode. Part of this NEA recovery project, since 2014 June EURONEAR serendipitously started to discover and secure the first NEAs from La Palma and using the INT, thanks to the teamwork including amateurs and students who promptly reduce the data, report discoveries and secure new objects recovered with the INT and few other telescopes from the EURONEAR network. Five NEAs were discovered with the INT, including 2014 LU14, 2014 NL52 (one very fast rotator), 2014 OL339 (the fourth known Earth quasi-satellite), 2014 SG143 (a quite large NEA), and 2014 VP. Another very fast moving NEA was discovered but was unfortunately lost due to lack of follow-up time. Additionally, another 14 NEA candidates were identified based on two models, all being rapidly followed-up using the INT and another 11 telescopes within the EURONEAR network. They include one object discovered by Pan-STARRS, two Mars crossers, two Hungarias, one Jupiter trojan, and other few inner main belt asteroids (MBAs). Using the INT and Sierra Nevada 1.5 m for photometry, then the Gran Telescopio de Canarias for spectroscopy, we derived the very rapid rotation of 2014 NL52, then its albedo, magnitude, size, and its spectral class. Based on the total sky coverage in dark conditions, we evaluate the actual survey discovery rate using 2-m class telescopes. One NEA is possible to be discovered randomly within minimum 2.8 deg2 and maximum 5.5 deg2. These findings update our past statistics, being based on double sky coverage and taking into account the recent increase in discovery
    corecore